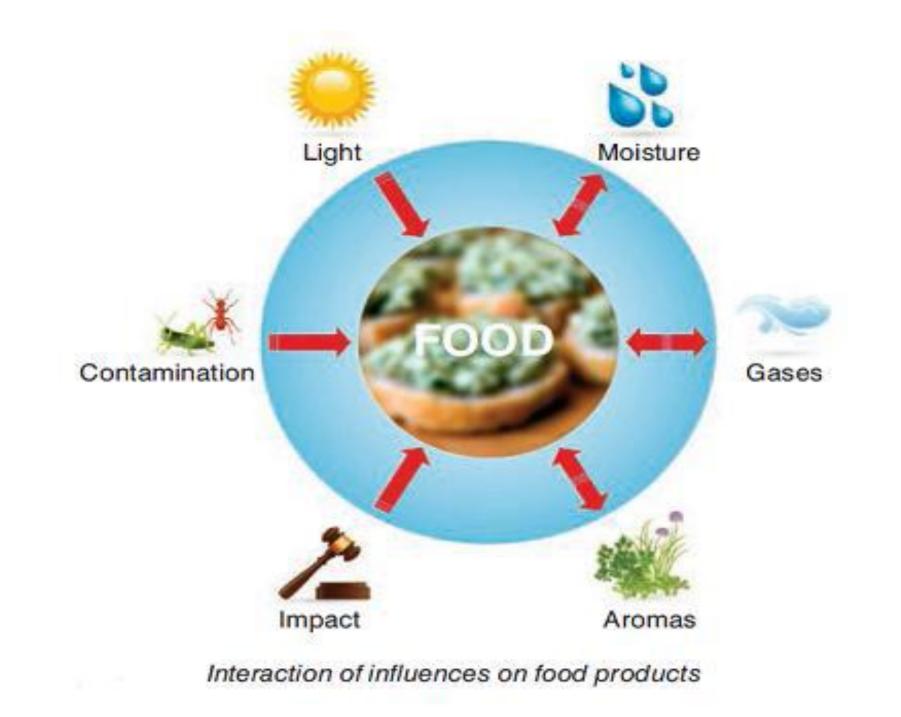
Packaging of Food Products

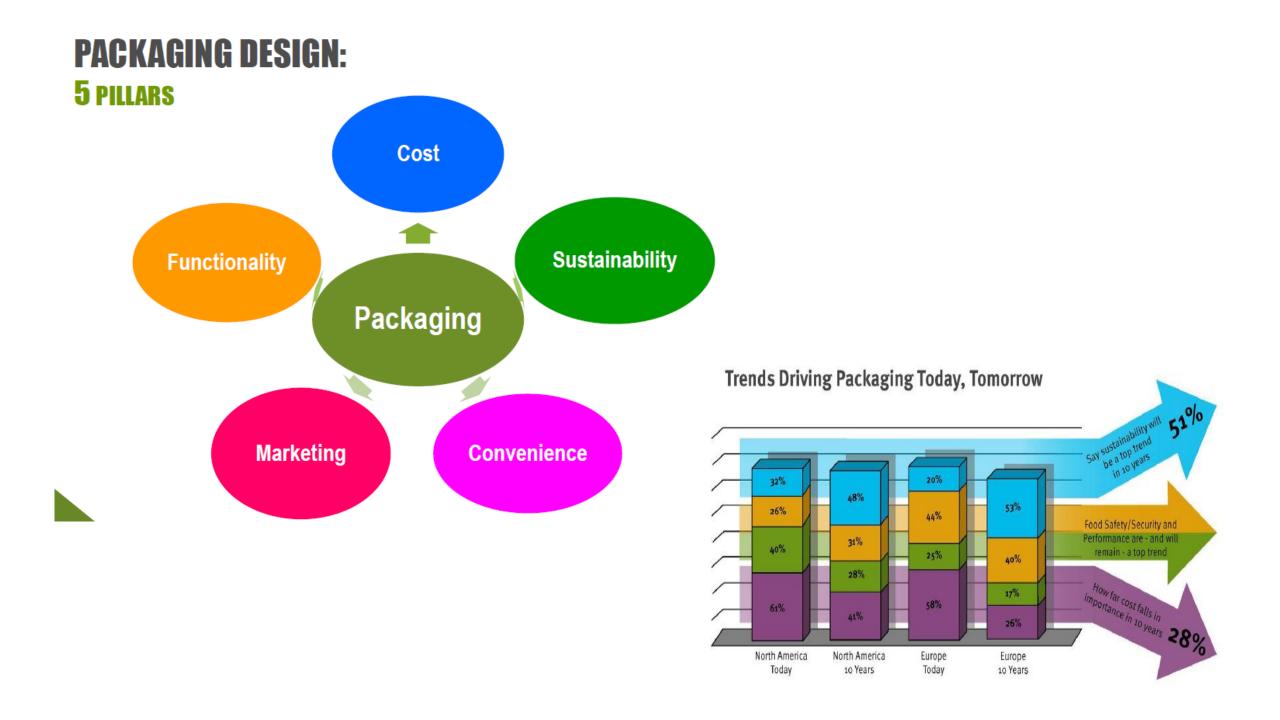

Dr Mahesh Kumar

Deptt. of Processing & Food Engineering PAU, Ludhiana

FUNCTIONS OF PACKAGING

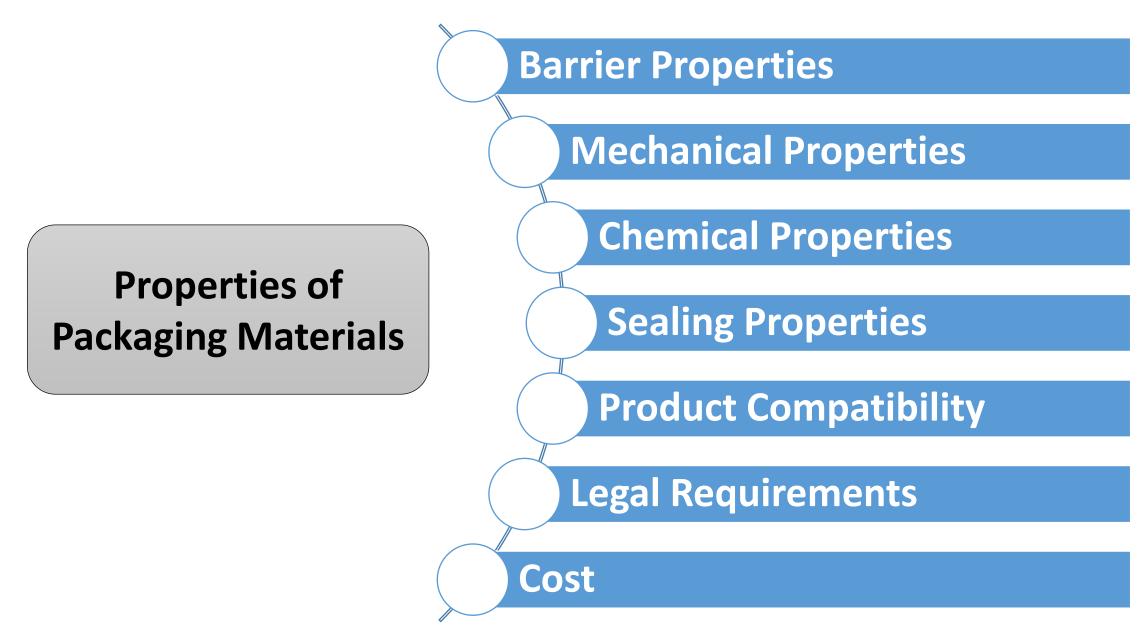
Types of Packaging

Consumer Packaging


- Designed for consumer
- Is convenient & appealing
- Main emphasis is on marketing

Industrial Packaging

- Focuses on the handling
- Protection & display during transportation
- Main emphasis -is on logistics



Packaging design

When designing packaging, it is important to consider the following:

- Is it easy to handle and open?
- Is it a convenient shape, so it is easy to stack?
- Which colours will be used on the packaging?
- What size of print should be used? (Can consumers read it easily?)
- Will it be economical to produce?
- What about environmental considerations?

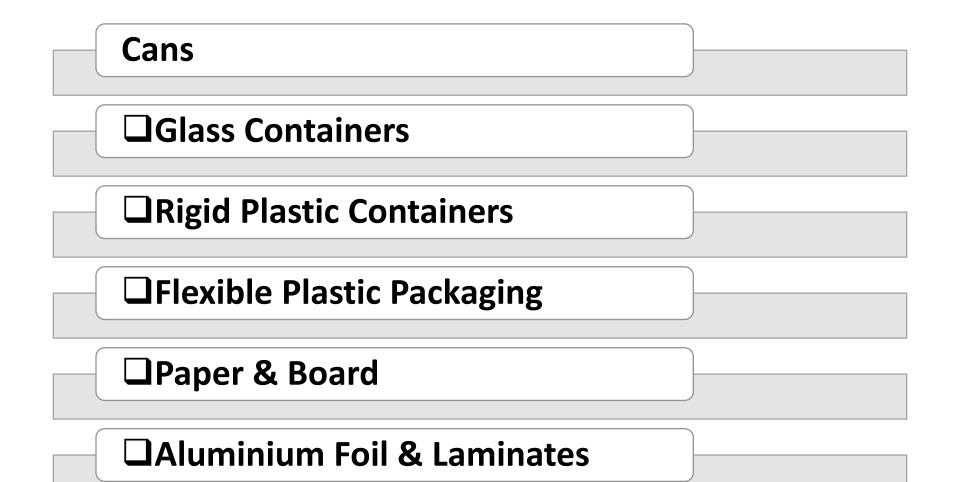
(Will it be recyclable or does it make minimum use of natural resources?)

CHARACTERISTICS

Environmental Factor	Deteriorative Effect of Food	Protective Packaging Property
Oxygen	Lipid oxidation, Vitamin Destruction, Protein loss	Oxygen barrier
Moisture	Nutritional quality loss Organoleptic changes, Browning reactions	Moisture barrier
Light	Oxidation, Rancidity, Vitamin destruction, Protein & Amino acid changes	Light barrier
Micro-organisms	Food spoilage, nutritional/quality loss, health hazards	Hermetic containment
Mechanical Advice (drop, compression, vibration, handling)	Organoleptic changes, spoilage and other quality changes	Sealing properties
Odorous substances & toxic chemicals	Off-flavor formation, taste Deterioration ,chemical changes	Barrier properties, chemical substance
Tampering	Product loss ,quality changes	Tamperproof, tamper evidence, tamper resistance
Consumer handling, abuse	Product loss ,quality changes nutritional changes	Mechanical properties

FOOD PRESERVATION TECHNIQUES

METHODS	TYPE OF PACKAGING MATERIAL
Cool storage and cold storage Cool storage- 5-12°C Cold storage- 0-5°C Deep freeze – 15°C flow	Flexible pouches, bags & sacks treated cartons, boxes triplet containers etc.
Heat preservations Balanching-100°C Pasterisation-60-75°C Sterlisation-110-130 ° C Aseptic processing-130°C	Hermetically sealed glass and metal container aseptic cartons and pouches.


FOOD PRESERVATION TECHNIQUES

METHODS	TYPE OF PACKAGING MATERIAL
Dehydration	Flexible, rigid and semi-rigid
Concentration	container.
Evaporation	
Drying	
Increase of salt content	
Increase of solid content	
Freeze drying	
Use of inert gas	Rigid tinplate flexible laminates
Vaccumisation	
Gas flushing –CO ₂ ,N ₂ alone or in	
combination and ozone	
Chemical preservation	Rigid , flexible
Benzoic acid, sorbic acid sulphur	
dioxide etc	
Other Irradiation	

PACKAGING MATERIAL SELECTION

- Production Methods
- Display Requirements
- Economic Consideration
- Marketing Needs
- Product Characteristics
- Properties of Packaging Material

Packaging Materials

Styrofoam

Cans

- •Cheap & widely used
- •Provides good protection of the contents
- •Easy to handle during manufacture (filling stacking & packing)
- Stack easily on supermarket shelves
- •Store for long periods of time
- Cans containing acidic ingredients are coated with a plastic lacquer to prevent a reaction with the metal
- Used for solid & semi-solid foods.

Glass Containers

Characteristics:

- Chemically inert wont react with its contents
- >Non porous, odourless & hygienic
- **Contents can be seen as glass is transparent**
- Great strength
- **>** Easy open & re-sealable
- Variety of shapes & sizes
- Long-term storage & extended shelf life

Paper & Cardboard

Paper:

- Used for a wide variety of products
- Versatile & cost effective
- Variety of shapes, textures & thickness' available
- Greaseproof paper can be used when packaging products such as confectionary & butter.
- They act as a barrier to odors & moisture

Paper & Cardboard

Paperboard (thicker paper-based packaging)

Can be laminated with other materials to create strength & moisture resistance e.g. Tetra packs

Pulped Fibreboard

Offers protection for products such as eggs because of the airspace between the particles

Rigid Plastic Packaging

- Lightweight & strong
- High resistance to breakage
- Available in a wide variety of colours, shapes, sizes & textures
- Can add to the sale appeal of the product
- Cheap and easy to produce compared to other packaging materials

Rigid Plastic Packaging

Types of plastic used:

Polyethylene terephalate (PET) - Used clear as colouring has an impact on the strength. E.g. soft drink, water & oil

High density polyethylene (HDPE) - Stronger when colour is added. Used for products with a shorter shelf life E.g. milk

Polystyrene (PS) - Aerated texture allows package to protect the product from physical damage. Also provide thermal retention E.g. trays & cups

Polypropylene (PP) - High melting point, useful for hot fill products such as soups & fruits in syrup. Can be moulded easily E.g. yoghurt & ice cream

Flexible Plastic Packaging

Any plastic that is formed into a sheet or reel with a thickness up to 0.375mm

Plastic films & Bags:

- Polyethylene (PET) E.g. cling wrap
- High-density polyethylene (HDPE) E.g. Cereal bags
- Low-density polyethylene (LDPE) E.g. Kraft singles wrappers
- Polypropylene (PP) E.g. chip, biscuit, 2 minute noodle wrappers

Flexible Plastic Packaging

	Polyethylene Terephalate Ethylene		Polypropylene
	PETE goes into soft drink, juice, water, detergent, and cleaner bottles. Also used for cooking and peanut butter jars.	PP	PP goes into caps, disks, syrup bottles, yogurt tubs, straws, and film packaging.
	High Density Polyethylene High Density Polyethylene HDPE goes into		Polystyrene
HDPE	milk and water jugs, bleach bottles, detergent bottles, shampoo bottles, plastic bags and grocery sacks, motor oil bottles, household cleaners, and butter tubs.	PS	PS goes into meat trays, egg cartons, plates, cutlery, carry-out containers, and clear trays.
	Polyvinyl Cloride		Other
PVC	PVC goes into window cleaner, cooking oils, and detergent bottles. Also used for peanut butter jars and water jugs.	OTHER	Includes resins not mentioned above or combinations of plastics.
	Low Density Polyethylene		
	LDPE goes into plastic bags and grocery sacks, dry cleaning bags, flexible film packaging, and some bottles.		

Aluminum Foils

- Light weight
- Flexible
- Strong
- Able to withstand moderate heat
 Examples:
 Tubes condensed milk
 Trays frozen foods
 Product seals sour cream, butter & yoghurt

Wrappers - Cadbury chocolate block

Laminations

Aluminium foil joined with other materials such as plastic and paper to create a stronger packaging material.

Example:

Muesli bar wrapper (paper, foil & plastic)

Tetra Packs:

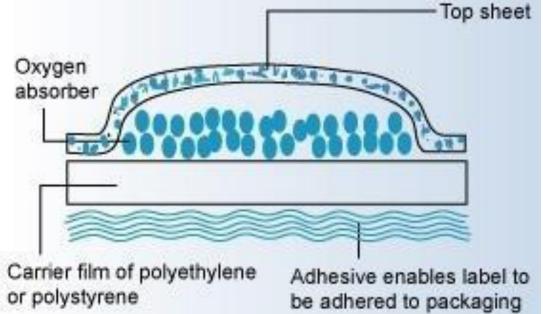
Multi-layered laminations known as composite packages

Each layer provides a different purpose

Metallising:

Plastic coated in a fine layer of metal. E.g. Twisties chip packets

Smart Packaging


Packaging system that is capable of carrying out intelligent functions:

Extend: Prolong the shelf life of food products Interact: Give consumers more product quality information

Shelf-life Extension

Active Packaging: Packaging that changes the condition of the packed food to extend the shelf-life or/and to improve safety or sensory properties, while maintaining the quality of the food

Modified atmosphere packaging (MAP) - first developed in the 1970s, MAP substitutes the air inside a package with a correct gas mix for optimum quality and shelf life

Gas Absorbers (sachets/pads/film) - capture residual gases such as O_2 and ethylene from inside the package

Gas Generators (sachets/pads/film) - ethanol and CO_2 emitters can be used as active features in order to address the weak points in the shelf life of packed goods

Antimicrobial compounds: Spices & essential oils, organic acids, organic & inorganic salts, nano-compounds, enzymes, bacteriocins

Packages using OnVu[™] Smart Labels

Many people decide to buy a product based on how it is packaged

